AFL++: Combing Incremental Steps of Fuzzing Research

In 14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association, Aug. 2020.

AFL++: Combining Incremental Steps of Fuzzing Research

Andrea Fioraldi[†], Dominik Maier[‡], Heiko Eißfeldt, Marc Heuse[§] {andrea, dominik, heiko, marc}@aflplus.plus †Sapienza University of Rome, ‡TU Berlin, [§]The Hacker's Choice **刘冯润** 2021/04/08

Background

AFL (@lcamtuf):

https://www.freebuf.com/articles/system/191536.htmł

Challenges && Contributions

Challenges:

- 1. Combining state-of-the-art fuzzing techniques is hard.
- 2. Evaluating combinations is hard.

Contributions:

- 1. a usable tool, incorporating recent fuzzing research.
- 2. novel Custom Mutator API, easy to implement and combine.
- 3. evaluate incorporated technologies, show target-dependence.

Cutting Edge AFL++ Evaluation

Intro

Overview:

- American Fuzzy Lop
- Smart Scheduling
 - AFLFast: Seed Scheduling
 - MOpt: Mutation Scheduling
- Bypassing Roadblocks
 - LAF-Intel
 - RedQueen
- Mutate Structured Inputs
 - AFLSmart

Coverage Guided Feedback

- Mutations
- Forkserver
- Persistent Mode

https://paper.seebug.org/842/

https://paper.seebug.org/842/

deterministic stage:

havoc stage: a stack of mutations

https://bbs.pediy.com/thread-254705.htm

<u>AFL:</u> - Coverage Guided Feedback - Mutations

- Forkserver
- Persistent Mode

Patch a loop into the target:

```
int main(int argc, char** argv) {
```

```
while (__AFL_LOOP(1000)) {
```

```
/* Reset state. */
```

```
memset(buf, 0, 100);
```

```
/* Read input data. */
```

```
read(0, buf, 100);
```

/* Parse it in some vulnerable way. You'd normally call a library here. */

```
if (buf[0] != 'p') puts("error 1"); else
if (buf[1] != 'w') puts("error 2"); else
```

```
if (buf[2] != 'n') puts("error 3"); else
```

abort();

https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

Cutting Edge AFL **AFLFast** MOpt LAF-Intel RedQueen AFLSmart

<u>AFLFast:</u> Contributions:

- observed that most generated inputs exercise the same few "high-frequency" paths.
- developed strategies to stress low-frequency paths.
 - Search Strategy decides the order of the fuzzer pick the seeds
- Power Schedules decides the amount of generated inputs from each seed (the seed' s energy)

f(i) total number of being fuzzed (frequency)

Cutting	AFLFast:	s(i): number of pick	s(i): number of pick			
Edge •	AFLFast Power Schedules: p(i) = ene	ergy				
AFL	1. EXPLOIT: p(i) = AFL	p(i)=lpha(i)				
AFLFast	2. EXPLORE: $p(i) = AFL / const$	$p(i) = rac{lpha(i)}{eta}$				
MOpt		$f(i) = \begin{cases} 0 & \text{if } f(i) > \mu \end{cases}$	$\sum_{i \in S^+} f(i)$			
LAF-Intel	3. Cut-Off Exponential (COE)	$p(i) = \lim_{\beta \to \infty} \left(\frac{\alpha(i)}{\beta} \cdot 2^{s(i)}, M \right)$ otherwise.	$\mu =$			
RedQueen	4. Exponential Schedule (FAST)	$p(i) = \min\left(rac{lpha(i)}{eta} \cdot rac{2^{s(i)}}{f(i)}, M ight)$	mean number of fuzz exercising a			
AFLSmart	5. Linear Schedule (LINEAR)	$p(i) = \min\left(rac{lpha(i)}{eta} \cdot rac{s(i)}{f(i)}, M ight)$				
	6. Quadratic Schedule (QUAD)	$p(i) = \min\left(rac{lpha(i)}{eta} \cdot rac{s(i)^2}{f(i)}, M ight)$				
	/		>			

3-6: prevent high-frequency paths to be fuzzed until they become low-frequency path

State-of-the-Art: Mutation Scheduling

https://wiki.vul337.team:888 8/doku.php?id=wiki:mopt_o ptimize_mutation_schedulin g_for_fuzzers

Cutting

MOpt:

State-of-the-Art: Mutation Scheduling

Edge AFL AFLFast MOpt LAF-Intel RedQueen AFLSmart

customized PSO

- (position of) a particle : (selection probability of) per operator
- swarm : selection probability distribution of operators

Multiple Swarms

- Pilot: evaluate each swarm fuzzing efficiency
- Core: perform fuzz with the best swarm selected by Pilot

Cutting Edge **AFL** AFLFast MOpt LAF-Intel RedQueen AFLSmart

LAF-Intel:

- Challenge: tricky conditional statements
- almost correct : 0xabad1dee

if (input == 0xabad1dea) { /* terribly buggy code */ else { /* secure code */

Idea:

- split up comparisons into multiple single-byte comparisons

LLVM Passes

- The split-compares-pass
- The compare-transform-pass
- The split-switches-pass

else {

19

observe that values from the input are directly used at various states during execution

Cutting Edge **AFL AFLFast** MOpt LAF-Intel RedQuee AFLSmart

RedQueen:

Contributions:

https://hexgolems.com/talks/redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

Colorization (remain bitmap): reduce the number of candidate positions

Replace(0x0, 0x44)		Replac	e(0)	xb1	, 0x44)		
af	00	00	00	af	00	00	00
ff	ff	ff	ff	b1	06	77	7a
00	00	00	00	45	ea	6c	3b
00	00	00	00	bb	a6	3e	b1
00	00	00	00		2d	b9	f0
00	00	00	00	of	6A	Λd	15
00	00	00	00	27	04	4u	40
	•			52	04	54	00
				C6	5e	†3	e/

https://hexgolems.com/talks/redqueen.pdf²¹

- Cutting Edge AFL **AFLFast** MOpt LAF-Intel RedQuee AFLSmart
- Nested Checksum
- 1. colorization

RedQueen:

- 2. identification checksum cmp
- 3. patching yields true: False Positive
- 4. input validation and fixing

fixing

- magic bytes <pattern -> repl>
- nesting: Topological Sort

State-of-the-Art : Mutate Structure Inputs

Edge AFL AFLFast MOpt LAF-Intel RedQueen AFLSmart

Cutting

A Common Issue: fuzzers generate mostly invalid inputs

Contributions:

AFLSmart:

- a high-level structural representation of the seed
 - parses input into Peach pits
- define innovative mutation operators
 - work on virtual file structure
 - rather than on the bit level

Sto	red	Bits		Infor	mation	Description
52	49	46	46	RI	FF	RIFF.ckID
24	80	00	00		2084	RIFF.cksize
57	41	56	45	W A	V E	RIFF.WAVEID
66	6d	74	20	f m	t _	fmt.ckID
10	00	00	00		16	fmt.cksize
01	00	02	00] 1	1 2	fmt.wFormatTag (1=PCM) &
						fmt.nChannels
22	56	00	00		22050	fmt.nSamplesPerSec
88	58	01	00		88200	fmt.nAvgBytesPerSec
04	00	10	00	4	16	Imt.nBlockAlign &
E A	61	74	61	4 2	+ -	data akID
00	08	00	00	u a	2048	data chejze
00	00	00	00	sound	data 1	left and right channel
24	17	10	f3	sound	data 2	left and right channel
30	13	30	14	sound	data 3	left and right channel
16	f 9	18	f9	sound	data 4	left and right channel
34	e7	23	a 6	sound	data 5	left and right channel
3c	f2	24	f2	sound	data 6	left and right channel
11	ce	1a	0d	sound	data 7	left and right channel
<numbe <rel< th=""><th>r n ati</th><th>ame on</th><th>="ck type</th><th>size" si ="size"</th><th>.ze="32 of="Da</th><th>" > ta"/></th></rel<></numbe 	r n ati	ame on	="ck type	size" si ="size"	.ze="32 of="Da	" > ta"/>
<td>er></td> <td></td> <td></td> <td></td> <td></td> <td></td>	er>					
<blob< td=""><td>nam</td><td>e="</td><td>Data</td><td>"/></td><td></td><td></td></blob<>	nam	e="	Data	"/>		
<paddi< td=""><td>ng</td><td>ali</td><td>gnme</td><td>nt=<mark>"16"</mark>/</td><td>'></td><td></td></paddi<>	ng	ali	gnme	nt= <mark>"16"</mark> /	'>	
DataMo	del	>				
ataMod	el	nam	e="C	hunkFmt"	ref=	Chunk">
<stri< td=""><td>ng</td><td>nam</td><td>e="c</td><td>KID" val</td><td>ue="im</td><td>t "/></td></stri<>	ng	nam	e="c	KID" val	ue="im	t "/>
<rtoc< td=""><td>к n</td><td>ame</td><td>="Da</td><td>ta"> ="wForms</td><td>tTa~"</td><td>sizo="16"/></td></rtoc<>	к n	ame	="Da	ta"> ="wForms	tTa~"	sizo="16"/>
	unio umb	er	namo	= wrorilla	iciay' ole" e	ize="16"/>
<n< td=""><td>umb</td><td>er</td><td>name</td><td>="nSampl</td><td>eRate"</td><td>size="32"/></td></n<>	umb	er	name	="nSampl	eRate"	size="32"/>
<n< td=""><td>umb</td><td>er</td><td>name</td><td>="nAvaBu</td><td>tesPer</td><td>Sec" size="32"/></td></n<>	umb	er	name	="nAvaBu	tesPer	Sec" size="32"/>
<n< td=""><td>umb</td><td>er</td><td>name</td><td>="nBlock</td><td>Align"</td><td>size="16" /></td></n<>	umb	er	name	="nBlock	Align"	size="16" />
<n< td=""><td>umb</td><td>er</td><td>name</td><td>="nBitsP</td><td>erSamp</td><td>le" size="16"/></td></n<>	umb	er	name	="nBitsP	erSamp	le" size="16"/>
<td>ck></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	ck>				-	
'DataMo	del	>				
•						
DataMod	el	nam	e="W	av" ref=	Chunk	">
<strin< td=""><td>g n</td><td>ame</td><td>="ck</td><td>ID" valu</td><td>ae="RIF</td><td>F"/></td></strin<>	g n	ame	="ck	ID" valu	ae="RIF	F"/>
<strin< td=""><td>g n</td><td>ame</td><td>="WA</td><td>VE" valu</td><td>ie="WAV</td><td>E"/></td></strin<>	g n	ame	="WA	VE" valu	ie="WAV	E"/>
<choic< td=""><td>e n</td><td>ame</td><td>="Ch</td><td>unks" ma</td><td>xOccur</td><td>s = "30000"></td></choic<>	e n	ame	="Ch	unks" ma	xOccur	s = "30000">
<bio< td=""><td>СК</td><td>nam</td><td>e="F</td><td>mtChunk"</td><td>rei="</td><td>ChunkFmt"/></td></bio<>	СК	nam	e="F	mtChunk"	rei="	ChunkFmt"/>
···	ck	nam	<u>م=</u> "D	ataChunk	" rof-	"ChunkData"/>
~DTO	ςr.	riaill	c - D	acacitulik	TGT-	GiulikData //

https://thuanpv.github.io/publications/TSE19_aflsmart.pdf

23

</Choice>

</DataModel>

Overview:

- Seed Scheduling

- based on power schedules of AFLFast

- Mutators

- Custom Mutator API
- RedQueen: Input-To-State Mutator
- MOpt Mutator
- Instrumentation

Intro Cutting Edge AFL++ Evaluation

Seed Scheduling:

AFL++

Seed Scheduling

Mutators

Instrumentation

AFLFAST Power Scheduling:

decides the amount of generated inputs from each seed (the seed' s energy)

1. EXPLOIT: AFL

- 2. EXPLORE: AFL / const
- 3. Cut-Off Exponential (COE)
- 4. Exponential Schedule (FAST)
- 5. Linear Schedule (LINEAR)
- 6. Quadratic Schedule (QUAD)
- 7. Mmopt
- 8. Rare

Custom Mutator API:

AFL++ AFL++ incorporates many mutators. Framework

- can be easily extend
- can be adapted to specific targets

Mutators <

Seed

Scheduling

Instrumentation implement API:

- afl_custom_(de)init
- afl_custom_queue_get
- afl_custom_fuzz: custom mutations
- afl_custom_havoc mutation
- afl_custom_post_process
- afl_custom_queue_new_entry

Trimming Support: custom trim api

Input-To-State Mutator:

- AFL++ Based on REDQUEEN' s Input-To-State Colorization Seed RedQueen: remain hash of bitmap Scheduling -AFL++: but also **remain the execution speed** (bounds of a 2x slowdown) -Mutators -Bypass Comparison: probabilistic fuzzing fail to bypass: fuzzed with low probability next time — Instru-RedQueen mentation cmp hooking: hardware-assisted VM breakpoints -
 - hit a small numer times: remove breakpoint

Input-To-State Mutator:

- AFL++ Seed Scheduling Mutators
- mentation

- Based on RedQueen's Input-To-State
 - Colorization
 - Bypass Comparison: probabilistic fuzzing
 - CmpLog Instrumentation
 - RedQueen:
 - comparisons are hooked by hardware-assisted VM breakpoints
 - arguments are extracted when hit
 - AFL++:
 - a shared table
 - each comparison logs the operands of its last 256 executions

MOpt:

Instrumentation:

- Unicornafl: support to Unicorn Engine
- QBDI: support to andriod libraries

https://www.tutorialspoint.com/compiler design/compiler design architecture.htm

LLVM:

AFL++

Seed

Scheduling

Mutators

Instru-

mentation

Coverage Metrics

- Edge Coverage: consider prev and cur
 - more collisions and less speed
- Ngram: consider cur and N-1 prev blocks (N in 2-16)

Pass:

- coverage feedback pass
- LAF-Intel Passes (improved)
- CmpLog Passes

. . .

cur_location = <COMPILE_TIME_RANDOM>; shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Pass : A pass refers to the traversal of a compiler through the entire program.

- afl-gcc, afl-g++ assembly-level rewriting instrumentation
- AFL++
 - afl-gcc-fast, afl-g++-fast: wrapper of afl-gcc, afl-g++
 - GCC plugin: true compiler-level instrumentation
 - not LLVM, **like** AFL LLVM mode (afl-clang-fast)

QEMU:

- AFL++ Seed Scheduling Mutators
- Deferred initialization
- Persistent mode
- Snapshot mode
- Partial instrumentation
- CompareCoverage
- CmpLog mode
- Wine mode

—

. . .

https://github.com/AFLplusplus/AFLplusplus/tree/stable/qemu_mode

QEMU:

CompareCoverage

- binary-level CompareCoverage = source-level LAF-Intel
- can be configured by env variable AFL_COMPCOV_LEVEL
 - AFL_COMPCOV_LEVEL=1: split only immediate values
 - AFL_COMPCOV_LEVEL=2: instrument all comparison instructions

Persistent Mode

. . .

- AFL QEMU mode: don't support persistent mode
- The START address
- The RET address

Instrumentation:

Table with supported features for each instrumentation backend									
	afl-gcc	LLVM mode	GCC plugin	QEMU mode	UNICORN mode	QBDI mode			
NeverZero	 ✓ 	 ✓ 		✓	✓				
Persistent mode		1	1	1	1	✓			
LAF-INTEL/ CompCov		1		1	1				
CmpLog		1		1					
Instrument filelist		1	1	partial					
InsTrim		1		-					
Ngram/Ctx coverage		1							
Snapshot LKM		✓							
	NeverZero Persistent mode LAF-INTEL/ CompCov CmpLog Instrument filelist InsTrim Ngram/Ctx coverage Snapshot LKM	Table with a fil-gcc NeverZero Persistent mode LAF-INTEL/ CompCov CmpLog Instrument filelist InsTrim Ngram/Ctx coverage Snapshot LKM	Table with supported feaafl-gccLLVM modeNeverZero✓Persistent mode✓LAF-INTEL/ CompCov✓CmpLog✓Instrument filelist✓InsTrim✓Ngram/Ctx coverage✓Snapshot LKM✓	Table with supported features for each inafl-gccLLVM modeGCC pluginNeverZero✓✓Persistent mode✓✓LAF-INTEL/ CompCov✓✓CmpLog✓✓Instrument filelist✓✓InsTrim✓✓Ngram/Ctx coverage✓Snapshot LKM✓	Table with supported features for each instrumentation baafl-gccLLVM modeGCC pluginQEMU modeNeverZero✓✓✓Persistent mode✓✓✓LAF-INTEL/ CompCov✓✓✓CmpLog✓✓✓Instrument filelist✓✓InsTrim✓✓Ngram/Ctx coverage✓✓Snapshot LKM✓✓	Table with supported features for each instrumentation backend afl-gcc LLVM mode GCC plugin QEMU mode UNICORN mode NeverZero ✓ ✓ ✓ ✓ ✓ ✓ Persistent mode ✓<			

https://aflplus.plus//papers/aflpp-woot2020.pdf

Evaluation:

Compare with FuzzBench

- 1. Default : AFL with some fixes
- 2. MOpt : Mutator
- 3. Ngram4 : Instrumentation
- 4. RedQueen : Additional cmp feedback
- 5. Ngram4, Rare: Instrumentation and Rare Scheduling
- 6. MOpt, RedQueen

FuzzBench: offer free service that evaluates fuzzers on a wide variety of real-world benchmarks.

Intro

Cutting Edge

AFL++

Evaluation

Time

(h) Coverage growth in *mbedtls*

afl: https://afl-1.readthedocs.io/en/latest/# aflfast: https://mboehme.github.io/paper/CCS16.pdf https://github.com/mboehme/aflfast RedQueen: https://react-h2020.eu/m/filer_public/6d/86/6d869f98-f544-49cc-8221b380c593888f/ndss19-redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

MOpt:

https://www.usenix.org/system/files/sec19-lyu.pdf

<u>aflsmart:</u>

https://thuanpv.github.io/publications/TSE19_aflsmart.pdf

aflplusplus:

https://aflplus.plus/papers/

Thanks for suggestions from Wang. Q&A or Suggestions

Thanks for listening:)

刘冯润 2021/04/08