
AFL++: Combing Incremental Steps of
Fuzzing Research

刘冯润
2021/04/08

In 14th USENIX Workshop on Offensive Technologies
(WOOT 20). USENIX Association, Aug. 2020.

1

Background

Intro

Evaluation

AFL (@lcamtuf)：

A mutational, coverage-guided fuzzer.

1. Instrumentation

2. queue

3. mutations to file

4. trigger new path

5. go to 2

https://www.freebuf.com/articles/system/191536.html

Cutting
Edge

AFL++

2

Challenges && Contributions

Challenges：

1. Combining state-of-the-art fuzzing techniques is hard.

2. Evaluating combinations is hard.

Contributions：

1. a usable tool, incorporating recent fuzzing research.

2. novel Custom Mutator API, easy to implement and combine.

3. evaluate incorporated technologies, show target-dependence.

Intro

Evaluation

Cutting
Edge

AFL++

3

State-of-the-Art

Overview：

- American Fuzzy Lop

- Smart Scheduling

- AFLFast：Seed Scheduling

- MOpt：Mutation Scheduling

- Bypassing Roadblocks

- LAF-Intel

- RedQueen

- Mutate Structured Inputs

- AFLSmart

Intro

Cutting
Edge

AFL++

Evaluation

4

State-of-the-Art

AFL：

- Coverage Guided Feedback

- Mutations

- Forkserver

- Persistent Mode

A -> B -> C -> D -> E (tuples: AB, BC, CD, DE)

A -> B -> D -> C -> E (tuples: AB, BD, DC, CE)

Block：

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart
Edge：

Code Coverage：

https://paper.seebug.org/842/

https://paper.seebug.org/842/

5

State-of-the-Art

AFL：

- Coverage Guided Feedback

- Mutations

- Forkserver

- Persistent Mode

A -> B -> C -> D -> E (tuples: AB, BC, CD, DE)

A -> B -> D -> C -> E (tuples: AB, BD, DC, CE)

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart
Edge：

Code Coverage：
cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Instrumentation：

6

State-of-the-Art

AFL：

- Coverage Guided Feedback

- Mutations

- Forkserver

- Persistent Mode

bit flips

addition and subtraction

insertion ...

deterministic stage:

havoc stage: a stack of mutations

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart

7

State-of-the-Art

AFL：

- Coverage Guided Feedback

- Mutations

- Forkserver

- Persistent Mode

https://bbs.pediy.com/thread-254705.htm

The exec() family of functions replaces the current
process image with a new process image.

Advantage：The fuzzed process goes through execv(),
linking, and libc initialization only once.

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart

8

State-of-the-Art

AFL：

- Coverage Guided Feedback

- Mutations

- Forkserver

- Persistent Mode

Patch a loop into the target:

https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart

9

State-of-the-Art: Seed Scheduling

AFLFast：

Contributions:

- observed that most generated inputs exercise the same few "high-frequency" paths.

- developed strategies to stress low-frequency paths.

- Search Strategy decides the order of the fuzzer pick the seeds

- Power Schedules decides the amount of generated inputs from each seed (the

seed’s energy)

AFL

AFLFast

LAF-Intel

Cutting
Edge

MOpt

RedQueen

AFLSmart

10

State-of-the-Art: Seed Scheduling

AFLFast：

- Search Strategy decides the order of the fuzzer pick the seeds

- Power Schedules decides the amount of generated inputs from each seed (the seed’s

energy)

AFL:

- order:

- smaller fav_factor means more favored

- energy:

- larger perf_score means more energy

update_bitmap_score: fav_factor

calculate_score: perf_score

exec_us*len

exec_us: execution time
bitmap_size: number of bits set in bitmap
handicap: number of queue cycles behind
depth: path depth

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

11

State-of-the-Art: Seed Scheduling

AFLFast：

AFLFast:

- order:

- smaller means more favored

- energy:

- larger pref_score means more energy

update_bitmap_score: s(i), f(i), fav_factor

calculate_score: pref_score

f(i): total number of being fuzzed (frequency)
s(i): number of pick

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

seed i:

exec_us*len

exec_us: execution time
bitmap_size: number of bits set in bitmap
handicap: number of queue cycles behind
depth: path depth

energy : the amount of generated inputs from each seed

Cutting
Edge

12

State-of-the-Art: Seed Scheduling

AFLFast：

AFLFast Power Schedules: p(i) = energy

1. EXPLOIT: p(i) = AFL

2. EXPLORE: p(i) = AFL / const
AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

energy : the amount of generated inputs from each seed

Cutting
Edge

13

State-of-the-Art: Seed Scheduling

AFLFast：

AFLFast Power Schedules: p(i) = energy

1. EXPLOIT: p(i) = AFL

2. EXPLORE: p(i) = AFL / const

3. Cut-Off Exponential (COE)

4. Exponential Schedule (FAST)

5. Linear Schedule (LINEAR)

6. Quadratic Schedule (QUAD)

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

3-6: prevent high-frequency paths to be fuzzed until they become low-frequency path

mean number of
fuzz exercising a
discovered path

f(i): total number of being fuzzed (frequency)
s(i): number of pickCutting

Edge

14

State-of-the-Art: Mutation Scheduling

MOpt：

Contributions:

- observe that efficient mutations are selected with a small number

- utilize a customized PSO to find optimal selection probability distribution of operators

https://www.usenix.org/system/files/sec19-lyu.pdf https://www.usenix.org/system/files/sec19-lyu.pdf

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

15

State-of-the-Art: Mutation Scheduling

MOpt：

customized PSO

- (position of) a particle : (selection probability of) per operator

- swarm : selection probability distribution of operators

Multiple Swarms

- Pilot: evaluate each swarm fuzzing efficiency

- Core: perform fuzz with the best swarm selected by Pilot

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

https://www.usenix.org/system/files/sec19-lyu.pdf

https://wiki.vul337.team:888
8/doku.php?id=wiki:mopt_o
ptimize_mutation_schedulin
g_for_fuzzers

Cutting
Edge

16

State-of-the-Art :Bypassing Roadblocks

LAF-Intel：

Challenge： tricky conditional statements

- almost correct：0xabad1dee

Idea：

- split up comparisons into multiple single-byte comparisons

LLVM Passes

- The split-compares-pass

- The compare-transform-pass

- The split-switches-pass

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

17

State-of-the-Art :Bypassing Roadblocks

LAF-Intel：

LLVM Passes

- The split-compares-pass

- only remain: <, >, ==, !=, all unsigned

- The compare-transform-pass

- rewrite strcmp and memcmp calls

- The split-switches-pass

- rewrite to lists of if

- use split-compare-pass

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

18

State-of-the-Art :Bypassing Roadblocks

RedQueen：

Roadblocks:

- magic number

- nested checksum

https://hexgolems.com/talks/redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

0 8 16 17 len

checksum checksum R Q

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

19

State-of-the-Art :Bypassing Roadblocks

RedQueen：

Contributions:

- observe that values from the input are directly used at various states during execution

- exploit input-to-state relation to deal with roadblocks

https://hexgolems.com/talks/redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

ABCD

VALU

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

20

State-of-the-Art :Bypassing Roadblocks

RedQueen：

Magic Bytes

1. tracing: hook comparisons and extract args

2. variations: addition, subtraction ...

3. encoding: little-endian, hex, base-64, ...

4. application: < pattern -> repl >

- Colorization (remain bitmap): reduce the number of candidate positions

https://hexgolems.com/talks/redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

ABCDVALU

Cutting
Edge

21

State-of-the-Art :Bypassing Roadblocks

RedQueen：

Nested Checksum

1. colorization

2. identification checksum cmp

3. patching yields true: False Positive

4. input validation and fixing

fixing

- magic bytes <pattern -> repl>

- nesting: Topological Sort

0 8 16 17 len

checksum checksum R Q

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

22

State-of-the-Art :Mutate Structure Inputs

AFLSmart：

A Common Issue: fuzzers generate mostly invalid inputs

Contributions:

- a high-level structural representation of the seed

- parses input into Peach pits

- define innovative mutation operators

- work on virtual file structure

- rather than on the bit level

https://thuanpv.github.io/publications/TSE19_aflsmart.pdf

AFL

AFLFast

LAF-Intel

MOpt

RedQueen

AFLSmart

Cutting
Edge

23

New Baseline: AFL++

Overview：

- Seed Scheduling

- based on power schedules of AFLFast

- Mutators

- Custom Mutator API

- RedQueen: Input-To-State Mutator

- MOpt Mutator

- Instrumentation

Intro

Evaluation

Cutting
Edge

AFL++

24

New Baseline: AFL++

Seed Scheduling：

AFLFAST Power Scheduling:
decides the amount of generated inputs from each seed (the seed’s energy)

1. EXPLOIT: AFL
2. EXPLORE: AFL / const
3. Cut-Off Exponential (COE)
4. Exponential Schedule (FAST)
5. Linear Schedule (LINEAR)
6. Quadratic Schedule (QUAD)

7. Mmopt

8. Rare

Seed
Scheduling

Mutators

Instru-
mentation

more energy than is required in expetation

prevent high-frequency paths to be fuzzed

until they become low-frequency path

focus on newest seeds

ignore runtime of the seed and

focus on seeds with rarely edges

AFL++

25

New Baseline: AFL++

Custom Mutator API：

AFL++ incorporates many mutators.

Framework

- can be easily extend

- can be adapted to specific targets

implement API:
- afl_custom_(de)init
- afl_custom_queue_get
- afl_custom_fuzz: custom mutations
- afl_custom_havoc mutation
- afl_custom_post_process
- afl_custom_queue_new_entry

Trimming Support: custom trim api

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

26

New Baseline: AFL++

Input-To-State Mutator：

Based on REDQUEEN’s Input-To-State

- Colorization

- RedQueen: remain hash of bitmap

- AFL++: but also remain the execution speed (bounds of a 2x slowdown)

- Bypass Comparison: probabilistic fuzzing

- fail to bypass: fuzzed with low probability next time

- RedQueen

- cmp hooking: hardware-assisted VM breakpoints

- hit a small numer times: remove breakpoint

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

27

New Baseline: AFL++

Input-To-State Mutator：

Based on RedQueen’s Input-To-State

- Colorization

- Bypass Comparison: probabilistic fuzzing

- CmpLog Instrumentation

- RedQueen:

- comparisons are hooked by hardware-assisted VM breakpoints

- arguments are extracted when hit

- AFL++:

- a shared table

- each comparison logs the operands of its last 256 executions

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

28

New Baseline: AFL++

MOpt：

- implements Core and the Pilot mode

- can be combined with Input-To-State mutator
Seed

Scheduling

Mutators

Instru-
mentation

AFL++

29

New Baseline: AFL++

Instrumentation：

Problem：hit count can overflow to 0

- NeverZero: add the carry flag 🔼

- Saturated Counters: freeze at 255🔽

AFL++ supports several backends：

- LLVM

- GCC

- QEMU

- Unicornafl: support to Unicorn Engine

- QBDI: support to andriod libraries

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

https://www.tutorialspoint.com/compiler_design/compiler_design_architecture.htm

30

New Baseline: AFL++

LLVM：

Coverage Metrics

- Edge Coverage: consider prev and cur

- more collisions and less speed

- Ngram: consider cur and N-1 prev blocks (N in 2-16)

Pass：

- coverage feedback pass

- LAF-Intel Passes (improved)

- CmpLog Passes

- ...

Seed
Scheduling

Mutators

Instru-
mentation

AFL++
cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Pass : A pass refers to the traversal of a compiler through the entire program.
31

New Baseline: AFL++

GCC：

- AFL

- afl-gcc, afl-g++

- assembly-level rewriting instrumentation

- AFL++

- afl-gcc-fast, afl-g++-fast: wrapper of afl-gcc, afl-g++

- GCC plugin: true compiler-level instrumentation

- not LLVM, like AFL LLVM mode (afl-clang-fast)

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

32

New Baseline: AFL++

QEMU：

- Deferred initialization

- Persistent mode

- Snapshot mode

- Partial instrumentation

- CompareCoverage

- CmpLog mode

- Wine mode

- ...

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

https://github.com/AFLplusplus/AFLplusplus/tree/stable/qemu_mode

33

New Baseline: AFL++

QEMU：

- CompareCoverage

- binary-level CompareCoverage = source-level LAF-Intel

- can be configured by env variable AFL_COMPCOV_LEVEL

- AFL_COMPCOV_LEVEL=1: split only immediate values

- AFL_COMPCOV_LEVEL=2: instrument all comparison instructions

- Persistent Mode

- AFL QEMU mode: don’t support persistent mode

- The START address

- The RET address

- ...

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

34

New Baseline: AFL++

Instrumentation：

Seed
Scheduling

Mutators

Instru-
mentation

AFL++

https://aflplus.plus//papers/aflpp-woot2020.pdf

35

Evaluation Use Cases

Intro

Evaluation

Evaluation：

Compare with FuzzBench

1. Default : AFL with some fixes

2. MOpt : Mutator

3. Ngram4 : Instrumentation

4. RedQueen : Additional cmp feedback

5. Ngram4, Rare: Instrumentation and Rare Scheduling

6. MOpt, RedQueen

Cutting
Edge

AFL++

FuzzBench: offer free service that evaluates fuzzers on a wide variety of real-world benchmarks.
36

Evaluation Use Cases

Intro

Evaluation

Evaluate RedQueen：

- RedQueen can bypass roadblocks.

- MOpt increase the coverage.

Cutting
Edge

AFL++

37

Evaluation Use Cases

Intro

Evaluation

Evaluate RedQueen：

- RedQueen can bypass roadblocks.

- MOpt suppress performance.

Cutting
Edge

AFL++

38

Evaluation Use Cases

Intro

Evaluation

Evaluate MOpt：

- Mopt suddenly starts gaining a massive

code coverage in the middle of the run.

- It happens for multiple runs.

Cutting
Edge

AFL++

39

Evaluation Use Cases

Intro

Evaluation

Evaluate MOpt：

- MOpt helps RedQueen a lot.

Cutting
Edge

AFL++

40

Evaluation Use Cases

Intro

Evaluation

Evaluate MOpt：

- MOpt has negative impact to RedQueen.

Cutting
Edge

AFL++

41

Evaluation Use Cases

Intro

Evaluation

Evaluate Ngram：

Cutting
Edge

AFL++

42

Ref

afl：

https://afl-1.readthedocs.io/en/latest/#

aflfast：

https://mboehme.github.io/paper/CCS16.pdf

https://github.com/mboehme/aflfast

RedQueen：

https://react-h2020.eu/m/filer_public/6d/86/6d869f98-f544-49cc-8221-

b380c593888f/ndss19-redqueen.pdf

https://hexgolems.com/talks/redqueen.pdf

MOpt：

https://www.usenix.org/system/files/sec19-lyu.pdf

43

https://afl-1.readthedocs.io/en/latest/
https://mboehme.github.io/paper/CCS16.pdf
https://github.com/mboehme/aflfast
https://react-h2020.eu/m/filer_public/6d/86/6d869f98-f544-49cc-8221-b380c593888f/ndss19-redqueen.pdf
https://hexgolems.com/talks/redqueen.pdf
https://www.usenix.org/system/files/sec19-lyu.pdf

Ref

aflsmart：

https://thuanpv.github.io/publications/TSE19_aflsmart.pdf

aflplusplus：

https://aflplus.plus/papers/

44

https://thuanpv.github.io/publications/TSE19_aflsmart.pdf
https://aflplus.plus/papers/

Q&A or Suggestions
Thanks for suggestions from Wang.

45

Thanks for listening:)
刘冯润

2021/04/08

46

